Применение искусственного интеллекта для оптимизации технологических процессов горнодобывающей отрасли

MAKE INTELLIGENT DECISIONS

(i) IntelliSense.io®

Казахстане

Платформа для принятия решений в режиме реального времени

Решения в режиме реального времени

Прогнозирование

Будущее: KPI операционных и финансовых проце<u>ссов</u>

Инструмент принятия решений

Предупреждения, основанные на прогнозах

Моделирование

"Сценарии "Что если" и "Упущенные возможности"

Мощный инструмент обучения

Цифровой двойник рудника и завода

Оптимизация

Автономные операции с помощью оптимизированной контрольной переменной ввода ПЛК

Функциональные КРІ

Анализ корневых причин

Ф**рап Горе** Платформа для предприятий

3 этапа развертывания платформы

Этап 1: Озеро данных

Данные в реальном времени

Лабораторные измерения

> Пакетные данные

Данные ручного ввода

- ✓ Наблюдение за процессами в реальном времени
- ✓ Отчеты по отдельным процессам:
- Улучшение конечных результатов

Фрап Гарр[®] Платформа для предприятий 3 этапа развертывания платформы

Этап 2: Цифровые двойники

Карта данных

Качество данных

Существующие модели

Внедрение новых моделей

Полезные данные

Набор моделей

Цифровой Двойник

Результаты

Прогнозирование процессов

Выгоды

- ✓ Полезные данные для оптимизации процессов
- ✓ Тестирование устойчивости процессов в виртуальной среде
- / Прогнозирование производительности процесса

Фрап Горр в Платформа для предприятий з этапа развертывания платформы

Этап 3: Непрерывный процесс оптимизации

Усовершенствованные модели процессов

Машинное обучение для внедрения новых моделей

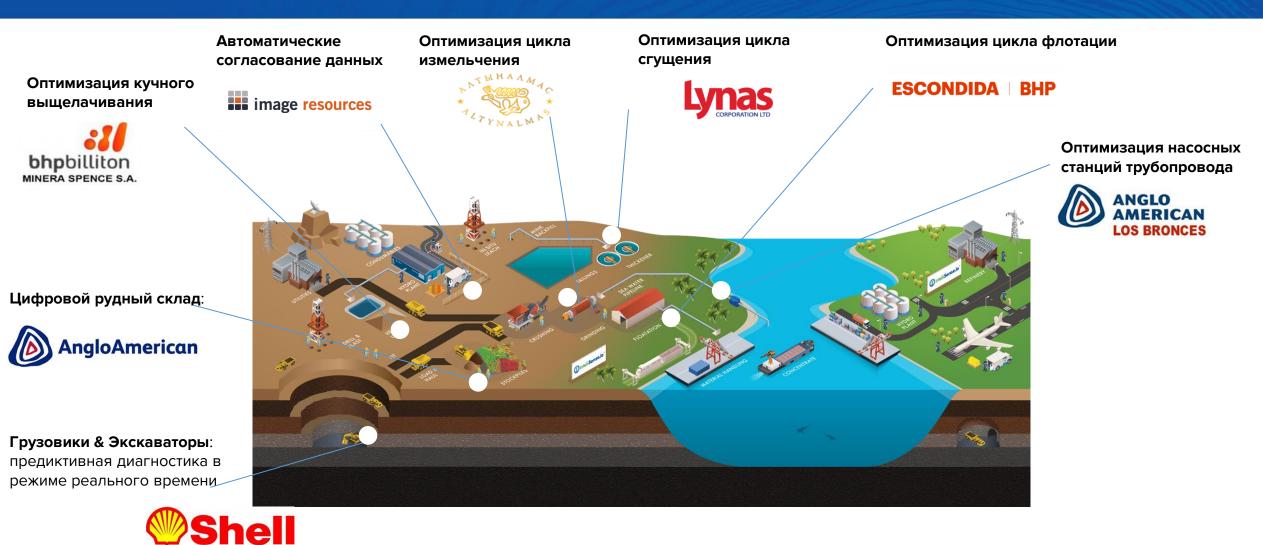
Оптимизированные модели Симуляция в режиме реального времени

Результаты

Открытый цикл ИИ

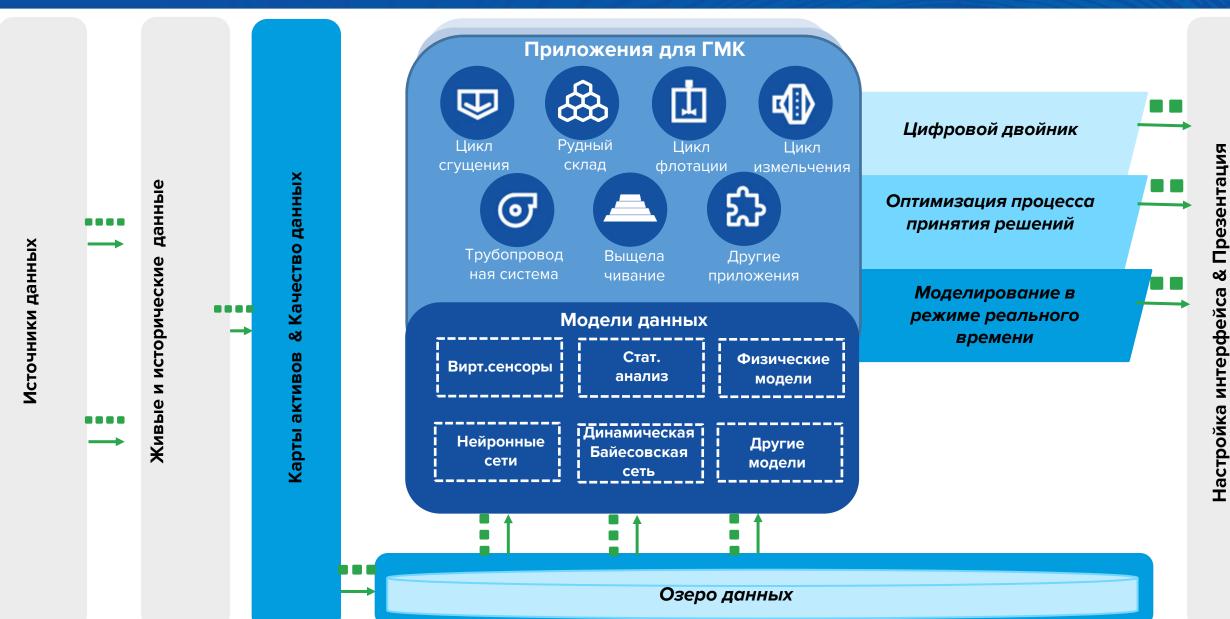
Интерфейс пользователя

Замкнутый цикл


Подключение к АСУ ТП

Выгоды

- ✓ Принятие решений в режиме реального времени
- Обеспечение достижения функциональных КРІ
- / Улучшение конечных результатов


Приложения IntelliSense.io: по всей технологической цепи предприятий ГМК от добычи до отгрузки

Промышленная платформа ИИ для принятии решений в реальном времени

Оптимизация цикла сгущения

Клиент:

Задачи:

- Увеличение непрерывной эксплуатации
- Уменьшение незапланированных остановов сгустителя
- Обеспечение устойчивости хвостохранилища и извлечение технической воды

Решения и результаты:

- Машинное обучение предоставляет рекомендации операторам ПО регулированию скорости потока и дозировки флокулянта
- Увеличение содержания твердых частиц предотвращение незапланированных событий изоляций сгустителя
- Стабилизация операционного процесса достигается путем **Уменьшения** изменчивости давления слоя, крутящего момента граблин сгустителя и уровня чистой воды

ВЫГОДЫ

Уменьшение потребления электроэнергии для перекачки воды

Снижение объема потребления воды

Снижение расхода флокулянта

Повышение % содержания твердых частиц в пульпе

Модель движения материалов

Задачи:

- Принятие оптимальных решений для повышения эффективности цикла измельчения.
- Определить состав материала в каждой точке цикла, а также выявить момент, когда определенный материал поступит в эту точку.
- Многие важные данные о расходе и свойствах материала не измеряются напрямую либо из-за высокой стоимости приборов и трудности их обслуживания, либо из-за того, что физически невозможно установить необходимые приборы в данном месте.

Решения и результаты:

- Модель материалов IntelliSense.io отслеживает потоки и свойства материалов (объем, расход, основные минералы / элементы, твердость, производительность, извлечение, шахтный отвод кислоты, литология, источник)
- Возможно смоделировать ожидаемое поступление материала в интересующую точку процесса в нужный момент времени в будущем с указанием его свойств

выгоды

Контроль подачи материала в реальном масштабе времени и точное знание состава материала в каждой точке цикла с учетом разброса параметров

Вычисление расхода и свойств материала в местах, где измерить не представляется возможным

Расчет времени пребывания материала в каждой части технологическогооборудования в реальном времени

Оптимизация цикла флотации

Клиент: ВНР

Задачи:

- Знать необходимое количество воздуха, подаваемого в ячейки, для оптимального извлечения материала.
- Уметь моделировать различные оперативные сценарии для обучения операторов, а также предоставление рекомендаций для эффективного управления циклом флотации.
- Определить лучшее сочетание рабочих условий в зависимости от свойств руды, улучшить извлечение материала, при этом гарантировать минимальные потери качества продукта.

Решения и результаты:

- Создание виртуального датчика количества газа, находящегося в ячейках, в режиме реального времени
- Предоставление рекомендаций экспертной системе, для обеспечения оптимального соотношения операционных затрат и производительности флотации.
- Моделирование и оценка в реальном времени различных возможных рабочих условий, например при изменений свойств руды (сценарии "Что если").

выгоды

Стабилизировать процесс флотации

Оптимизация цикла измельчения

Клиент:

Задачи:

- Увеличение производительности
- Недостаток знаний о поступающем материале приводит к частым перегрузкам мельницы
- Установка режима подачи и разбавления руды
- Прогнозирование уровня шаровой загрузки, поддержка данного уровня в определенных пределах

Решения и результаты:

- Цифровой двойник SAG Mill оптимизирует путем непрерывной работы
- Искусственный интеллект прогнозирует производительность мельницы на интервале 20 минут
- Прогнозирует возможные перегрузки
- Оптимизация в реальном времени увеличивает производительность, снижая энергопотребление и поддерживая эффективность

(i)IntelliSense.Lab

ВЫГОДЫ

Увеличение производительности

Снижение количества потребления воды

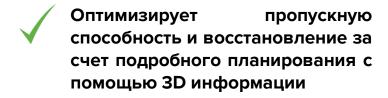
Увеличение подачи руды

Сокращение расходных материалов

Цифровой рудный склад

Клиент:

Задачи:


- Управление рудным складом на основе понимания материалов в запасах имеет решающее значение при планировании горных работ и производственного процесса
- Минимизация дисперсии колебания качества руда
- Нехватка знаний о содержании рудного склада

Решения и результаты:

- Цифровой двойник рудного склада
- Информация в режиме реального времени, позволяющая прогнозировать объем материала поступающего на перерабатывающую фабрику
- Обновление модели контроля качества руды за счет использования онлайн данных из сети производственного мониторинга
- Интегрированные данные из системы управления и геологических систем

выгоды

Сокращение ошибок в разгрузке и как следствие сокращение себестоимости руды в складах

БУДЕМ РАДЫ ОТВЕТИТЬ НА ВАШИ ВОПРОСЫ

Контакты: Андрей Тян

E-mail: andrei@kz.intellisense.io

Mob: +7 701 711 1840

